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About Barlow’s and Mariotte’s Formulas 

Introduction 

In the technical literature there is a subject that, despite its apparent universality and simplicity, is sometimes given 
opposite interpretation and application. It is the classical formula used to calculate the hoop primary membrane 
stress in piping or cylindrical vessel loaded with an internal pressure: 

𝜎ℎ =
𝑃𝐷𝑖

2𝑡
 

This formula represents the basis for the design (and verification) criteria adopted by practically all construction 
and design codes for pressure vessels and pressure piping. 

A first peculiar aspect is about the name this formula is given to, since in the international English technical 
literature it is, with no exception, given the name of “Barlow’s formula”, whereas in Italian academy and handbooks 
written by Italian authors, even with abroad publishing companies and in English, it is designated as “Mariotte’s 
formula”. On this side, some author moves forward up to assigning to Boyle too the paternity of this formula, 
designating it as “Boyle-Mariotte’s formula” (see below). For what I know, in Italy nobody uses the wording 
“Barlow’s formula”. I too during my university degree became familiar with “Mariotte’s formula” so that I used this 
expression to name the hoop stress equation. Leaving out the designation “Boyle-Mariotte’s formula” whose 
genesis I can only attribute to a cognitive bias or a mental association lapsus,  due to the fact that Boyle had no 
involvement in material strength studies (see Timoshenko ref. [3]), especially for piping, what needs to be 
understood is the reason of this different designation of the same mathematical object and what is the correct one. 

A second peculiar aspect that deserves a deep review has a technical nature and involves, in addition to the 
parameters used in the equation (especially if the internal, external or mean diameter), whether it is applicable to 
thin or thick wall cylindrical shells. 

Mariotte and Barlow 

In the title of this paragraph the order of citation of the author’s follows the time they operated. Edme Mariotte, 
member of the French Academy, was active in France in the seventeenth century (1620-1684); whereas Peter 
Barlow was active in England at the turn of the eighteenth and nineteenth centuries (1776-1862). 

The former is qualified as physicist (ref. [1]; whereas, the latter as mathematician (ref. [2]). In 
reality, in accordance with the habits of the time, both moved overoperated on various 
scientific fields ranging from physics, to engineering, to astronomy.  

In his book “History of Strength of Materials” (ref. [3]), Stephen Timoshenko greatly 
emphasizes Mariotte, described as one of the major physicists who in the seventeenth 
century contributed to the development of the strength of material science. Paragraph 5 of 
Chapter I, from page 21 through 25, is entirely dedicated to Mariotte and the main outcomes 
of his activity included the one linking his name to piping strength: the assessment of piping 
bursting strength when submitted to an hydrostatic pressure (Figure 1). Performing these 
tests, Mariotte reached the conclusion that the required thickness for the piping shall be 
proportional to the internal pressure and to the piping diameter. 

This experiment is described in the second tome of the collection of his books, (ref. [4]), fifth 
part with title “De la Conduite des Eaux et de la Resistance des Tuyaux”, where at page 473 
the following rule is read:  

« I. Règle : Si la hauteur du réservoir est double, il y aura deux fois autant de poids d’eau, & par conséquence il 
faudra deux fois autant d’épaisseur de métal dans le tuyau afin qu’il y ait deux fois autant de parties à séparer. Si le 
diamètre du tuyau est 2 fois plus large, il faudra 2 fois plus d’épaisseur : car les mêmes parties du fer blanc ne feront 
pas plus chargées, & elles sont seulement doubles. » 

Mariotte’s conclusions are then conceptual and not channeled into a formula. 

  

Figure 1 – Cylindrical 
vessel used by 

Mariotte for his 
bursting tests 
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Barlow too is mentioned in Timoshenko’s handbook in relation to his treatise on material strength (ref. [6]), the 
work (calculations and tests) performed with Thomas Telford on the Menai Strait bridge (the first big suspension 
bridge), his contributions on the bending of beams. Beyond the strength of materials, Barlow worked on 
mathematics (Barlow’s tables), optics (he invented the Barlow’s lens), magnetism (conceived the Barlow’s magnetic 
compensator), electro-magnetism and railway engineering. He also invented the so called “Barlow’s wheel”, a very 
initial application of a homopolar electrical motor (ref. [7], which Faraday used for his studies on the electro-
magnetism. 

At page 210 of his treatise (ref. [6], whose first edition was of 1837, the formula to compute the thickness of a 
cylindrical subject to hydraulic pressure is given. The formula is written as follows (using the same symbology as 
Barlow): 

𝑥 =
𝑝𝑟

𝑐 − 𝑝
 

where: 

𝑝 is the pressure 

𝑟 is the cylinder inside1 radius 

𝑐 is the material strength (designated as cohesion) 

𝑥 is the searched thickness. 

Barlow’s conclusions are the same as Mariotte’s ones, but more complete since related also to the material strength 
and presented with a mathematical formula. Formula that, however, is not only different than that today presented 
as Barlow’s formula (se previous paragraph), but is also not correct since based on assumptions that do not respect 
the equilibrium, as Goodman proved in his book ref. [30] and  the authors of paper ref. [22] support, along with 
standard ISO TR 10400:2018 (ref. [27]). 

Citations of both formulas 

As said at the beginning, the so called “Barlow’s formula” is aimed at computing the hoop stress. In the Introduction, 
I assigned to this tress the specification “primary membrane” using a definition very classical in pressure vessel 
design. However, this description is often forgotten when speaking about this stress, what can be, in my opinion, 
one of the reasons of the confusion found in the use of the formula. It is, finally, interesting to observe that, while 
the hoop stress formula is present in all books and handbook, only those regarding piping design use the designation 
“Barlow’s formula”, whereas books and handbooks regarding pressure vessel construction and design usually do 
not use the wording “Barlow’s formula” when speaking about the circumferential stress. 

The equation for the calculation of the hoop stress (primary membrane) in a pressurized piping or cylindrical shell 
is given as “Barlow’s formula” in the following documents (whose overview although extended is not to be intended 
as complete). 

1.  The M.W. Kellogg Company - Design of Piping Systems – Second Edition – John Wiley & Sons, 1956 ([9]) 

 Barlow mentioned in para. 2.1 page 32 (outside diameter), para. 2.4a page 43 where the following is read: 

“For the most common surface of revolution, the cylinder, the so-called inside diameter (or membrane) 
and outside diameter (or Barlow) formulas were first used for thickness/diameter below and above 0.1, 
respectively. These were later supplanted by the mean diameter formula and, more recently, by the 
universally adopted formula approximating the results of Lamé formula. All these formulas may be 
expressed in a common manner as follows: 

𝑆 =  (𝑝𝑟𝑖 𝑡⁄ ) + 𝐾𝑝 

where:  

𝑝 = internal pressure 

𝑟𝑖 = inside radius 

 
1 Barlow clarifies that 𝑟 is the inside dimeter at page 119 of ref. [31] that is an excerpt of the book ref. [6], in the paragraph 
preceding the one where the formula is given. 
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 𝑡 = wall thickness 

𝐾 = constant having values between 0 and 1 

If 𝐾 is given the value of 0, the inside diameter formula is obtained; for 𝐾 =  0.5, the mean diameter; far 
𝐾 =  1.0, the outside diameter. When the value of 0.6 is used, stresses are obtained which correlate 
reasonably well far values of 𝑡 up to about 0.5𝑟𝑖 with the recognized inside circumferential stress formula 
of Lamé. This approximation discovered by H. C. Boardman (ref. [8]), was rapidly adopted far moderate 
temperature piping by both Pressure Vessel and Piping Codes, while far piping in the creep range it is 
considered applicable if a further adjustment of 𝐾 is made as covered later in this section…” 

2.  Peng, L.C., and Peng, T.L. – Pipe Stress Engineering – ASME Press, 2009 ([10])  

 Barlow mentioned at page 103, where the following is read: 

“Equation (4.7) 𝒕 = 𝑷𝑫/𝟐𝑺𝑬 (D = outside diameter) is the simplified conservative formula generally 
referred to as Barlow’s formula. This equation is the same as Eq. (2.14) 𝑆ℎ𝑝 = 𝑟𝑖𝑃 𝑡⁄ . Equation (4.7) can 

also be considered a special form of Eq. (4.5) 𝑡 = 𝑃𝐷/2(𝑆𝐸𝑊 + 𝑃𝑦) by considering the y coefficient as 
zero. Equation (4.7) is very conservative and is generally not used in creep range application. Due to its 
simplicity, this equation is used extensively in piping literatures.” 

3.  Anvil – Pipe Fitters Handbook, Building Connections That Last – 06.05 ([11]) 

 Barlow mentioned at page 208 (outside diameter) where the following is read: 

“Barlow’s Formula is a safe, easy method for finding the relationship between internal fluid pressure and 
stress in the pipe wall. The formula predicts bursting pressures that have been found to be safely within 
the actual test bursting pressures. 

It is interesting to note that the formula uses the “outside diameter” of pipe and is sometimes referred to 
as the “outside diameter formula.” 

𝑃 = 2𝑡𝑆 𝐷⁄  

where: 

𝑃 = internal pressure 

𝐷 = outside diameter 

𝑡 = wall thickness 

𝑆 = unit stress” 

4.  Ellenberger, J. P. - Piping and Pipeline Calculations Manual Construction, Design Fabrication and 
Examination - Second Edition – BH, 2014 ([12]) 

  Page 57, Figure 5.1, page 58, 59 

In calculating the wall thickness for pipe, the basic formulas for the primary (hoop) stress have been 
around for ages. There are many variations. At last count there were more than 20. Each of these 
addresses the basic problem somewhat differently to account for the variations in failure modes that can 
occur. But there are two fundamental differences: the thin-wall approach, which we call the Barlow 
equation, and the thick-wall approach, which we call the Lame equation. This then raises the question: 
When does a thin wall become thick? When the problem is thought about, it is not too hard to figure out 
that the pressure is higher on the inside of the pipe than on the outside. That may not be true if the pipe 
is buried in a very deep underwater trench. There, the outside pressure can be higher than the inside or 
at least the same order of magnitude. 

From that logic, for the more general case a man named Barlow surmised that if the pipe is thin one can 
assume that the thinness of that wall allows one to average the stress across the thickness (see Figure 
5.1). 
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So, he devised a simple formula by splitting a unit length of pipe through the diameter. He then said the 
pressure across that diameter creates a force equal to the pressure times the diameter, and the two-unit 
thicknesses create the area that resists that force. 

Thus, the stress equation becomes: 𝑺 = 𝑷𝑫/𝟐𝒕. This is the basic equation that the code presents. Since 
the goal is to find the unknown thickness, the formula is rearranged to solve for t given the other three 
parameters: pressure, outside diameter (OD), and allowable stress. The formula then becomes: 𝑡 =
𝑃𝐷/2𝑆… for a given pressure the stress is proportional to the ratio: 𝐷 𝑡⁄  

Page 60,  

“A relationship between the thickness and the internal radius can be derived, and then this expression can 
be established: 

𝐾 = 1 +
𝑡

𝑟𝑖
 

From this one can establish an index of the maximum stress to the internal stress and get an index of how 
much that maximum stress exceeds the simple Barlow equation (not the code-adjusted Barlow). Then, 
keeping in mind that the allowable stresses are established at a margin below yield, one can determine 
the severity of using the simpler equation” 

Here the author introduces the Table 5.1 that provides how the ratio of Lamé maximum stress over 
Barlow’s stress changes as a function of K. Barlow’s stress is correctly indicated as an average stress, since 
the values shown in Table 5.1 are obtained making use of the inside radius, which is a way to obtain the 
average hoop stress (see below and Kellogg, page 43 at clause 1 here above) 

Page 62 “… like the Barlow equation, it is a good approximation …”  

Page 69 “Use the simplest equation (Barlow) to calculate the thickness for a 6NPS pipe (𝐷𝑜 = 6.625") at 
875 psi …” 

Page 104 “…The more recent finite-element programs, especially the solid-model ones with solid mesh, 
give those incremental stresses cell by cell. They do not make the assumption that Barlow did that it is 
okay to average. Nor do they make the Y factor adjustments that some codes make to set those stresses 
to some specific point through the wall. They require what is generally known as linearization to get from 
a comparable stress to a “code stress.” …” 

Page 107 “… 3. The next step is to calculate the pressure - that is, the “target pressure” or minimum proof 
test pressure. This calculation may be the most controversial, or the part of the test that is discussed the 
least. It is also the part that differs according to what type of fitting is being tested. The Barlow formula 
is used: 

𝑃 =
2𝑆𝑡

𝐷
 

Page 111 “…One can also calculate the pressure with the Barlow formula as follow …” 

5.  Nayyar, M.L. – Piping Handbook – seventh edition – McGraw-Hill, 2000 ([13]) 
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 Barlow’s equation at page C.22 (1251) 

“Pipe-Wall Thickness Selection. After determining the internal diameter of the pipe, the designer must 
select materials, consider their strength, and select a pipe-wall thickness or schedule, as a function of 
temperature, pressure, corrosion, erosion, vibration, and external loads, as required. 

Pipe-wall thickness determination begins with the basic hoop stress in the pipe wall. This stress calculation 
ignores longitudinal wall stress that exists if the pipe has closed ends. An example of this is a flask or short 
header. 

Advanced analysis shows that for thin-wall pipe, the outside diameter should be used in the hoop stress 
equation: 

𝑆 =
𝑃𝐷𝑜

2𝑡𝑚𝑖𝑛
 

where  

𝑃 = internal design pressure, psig (kPa) [gauge] 

𝐷𝑜 = outside diameter of pipe, in (mm) 

𝑡𝑚𝑖𝑛 = minimum required pipe wall thickness, in (mm) 

𝑆 = allowable stress, psi (kPa) 

This equation, called the Barlow formula, is the basis for most code stress pipe-wall thickness calculations 
such as those provided in ASME B31.1 and B31.3. 

The formula also applies to thick-walled pipe. 

The Barlow formula allows determination of wall thickness for flexible pipe required to handle internal 
pressure. …” 

Note: The statement that using the outer diameter is a consequence of advanced analyses has no 
correspondence in any other technical book known. Using the outer diameter in this formula is a 
consequence of the equivalence adopted by Goodman (see the following paragraph Goodman ’s 
demonstration) based on the stress on the inside surface rather than on the average stress. If the average 
hoop stress would be searched, the use of the outer diameter would cause a violation of the equilibrium 
for the thin-walled piping, too. 

6.  Helguero, M.V. - Piping Stress Handbook – Second Edition – Gulf Publishing Company, 1986 ([14]) 

 Barlow’s equation section 7 page 177: 

“The y value in the general formula reflects the effect of creep at high temperatures. In some ANSI Code 
sections that do not cover temperatures over 900'F, the y value of 0.4 is directly inserted in the formula, 
the formula with 𝑦 =  0.4 is known as the "modified lame" formula. In Sections 4 and 8 of ANSI B31 the 
Barlow formula is used, which is a special case of the general formula in which 𝑦 = 0.0. In addition, 
Section 8 is based on nominal thickness rather than minimum thickness; the tabulated 𝑃/𝑆 ratios for 𝑦 =
 0 may be placed on a nominal wall basis by multiplying by 8/7.” 

7.  Becht, C. IV – Process Piping: The Complete Guide to ASME B 31.3 – ASME Press, 2002 ([15]) 

 Chapter 4, page 26  

“… Three additional equations were formerly provided by the Code, but two were removed to be consistent 
with ASME B31.1 and simplify the Code. They may continue to be used. The first of the removed equations 
is 

𝑡 =
𝑃𝐷

2𝑆𝐸
 

This equation is the simple Barlow equation, which is based on the outside diameter and is always 
conservative. It may be used, because it is always more conservative than the Boardman equation, which 
is based on a smaller diameter (except when Y = 0). The second removed equation is 
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𝑡 =
𝐷

2
(1 − √

𝑆𝐸 − 𝑃

𝑆𝐸 + 𝑃
) 

This equation is the Lamé equation rearranged to calculate thickness. Although it is not specifically 
included. it could be used, in accord with para. 300(c)3. However, it should not make a significant 
difference in the calculated wall thickness. …” 

8.  Rao, K.R. – Companion Guide to the ASME Boiler and Pressure Vessel Code, Vol. 2 – Fourth Edition – ASME 
Press, 2012 ([34]) 

 Chapter 37, page 37.2 (717):  

“Design for internal pressure (transportation pipelines) 

Hoop stresses due to internal pressure in pipelines are calculated using the “Barlow equation”, 𝑆𝐻  =
 𝑃𝐷/2𝑡, and the outside diameter. The calculated hoop stress is an approximation to the exact hoop 
stress. Most pipelines have a ratio of diameter to wall thickness, 𝐷/𝑡, in the range of 40 to 100 so the 
error in the approximation is small (1% to 3%) and is slightly conservative. Offshore pipelines, which use 
heavier-wall pipe, may be designed using the Lame equation. 

Page 37-5 (720):  

Paragraph 403.2.1 (of B31.4) establishes the design wall thickness of steel pipe as 𝑡 = 𝑃𝑖𝐷 2𝑆⁄  in 
accordance with the “Barlow equation” where the terms are as defined previously. The nominal wall 
thickness is then 𝑡𝑛  =  𝑡 +  𝐴, where A = sum of allowances for threading or grooving, corrosion, and 
increased thickness for mechanical protection against hazards. The pressure design equation applies to 
both straight pipe and curved pipe segments made by cold bending in the field or induction bending. The 
value of F used in B31.4 is 0.72 for all locations and fluids. …” 

Page 37-15 (730): (Offshore pipelines) 

 “The hoop stress is calculated per A402.3.5 using the Barlow equation, but the net pressure is the 
difference between the internal operating pressure and the external hydrostatic pressure. The hoop stress 
design factor 𝐹1 is 0.72 for the pipeline and 0.60 for the platform riser and piping. Design factors are listed 
in Table A402.3.5-1 and are reproduced herein as Table 37.5.“ 

Page 37.18 (733): (B31.8) 

37.3.2.2 Pressure Design Formula for Steel Pipe The pressure design formula for steel pipe is specified in 
841.1.1(a) in accordance with the “Barlow formula” as  

𝑃 =  
2𝑆𝑡

𝐷
𝐹𝐸𝑇 

where 

𝑃 is the design pressure 

𝑆 is the SMYS 

𝑡 is the nominal thickness 

𝐷 is the pipe specified outside diameter 

𝐹 is the location class design factor obtained from Table 841.1.6-1 

𝐸 is the longitudinal joint factor obtained from Table 841.1.7-1, and  

𝑇 is the temperature derating factor obtained from Table 841.1.8-1.  
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The design pressure may or may not be the maximum allowable operating pressure (MAOP) of the pipeline 
as that is determined in consideration of the test pressure and the pressure ratings of components and 
equipment. …” 

Page 37-27 (742): (B31.8) 

“37.3.4.1 Design of Plastic Pipe The pressure design requirements for plastic pipe are found in Article 
842.2. The formula for the design pressure is  

𝑃 = 2𝑆
𝑡

𝐷 − 𝑡
×  0.32 

where  

S is a specified strength value (discussed below),  

t is the specified wall thickness, 

D is the specified outside diameter.  

This equation is recognizable as the “Barlow equation” written for the mean diameter (D–t) rather than 
outside diameter. For thermoplastic pipe, S is the long-term hydrostatic strength determined as a 
projection of short-term rupture strength tests to the intercept at 100,000 hours; and for thermosetting 
pipe it has a value of 11 ksi. The long-term hydrostatic strength is also known as the hydrostatic design 
basis (HDB). The 0.32 factor in the design equation corresponds to a nominal factor of safety of 3. For 
thermoplastic pipe, maintaining stresses at 32% of the HDB would ideally assure several hundred years of 
service owing to the inverse stress-time-to-rupture relationship of the viscoelastic material. The 
occurrence of leaks after a few years indicates elevated stress levels typically attributable to faulty 
installation. …” 

Page 37-31 (746): 

“The hoop stress is calculated per A842.2.2 using the Barlow equation, but the net pressure is the 
difference between the internal operating pressure and the external hydrostatic pressure. The hoop stress 
design factor F1 is 0.72 for the pipeline and 0.60 for the platform riser and piping. Design factors are listed 
in Table A842.2.2-1. Table A842.2.1 is identical to the analog offshore liquid pipelines, reproduced herein 
as Table 37.2. …” 

9.  Rao, K.R. – Continuing & Changing Priorities of ASME Boiler & Pressure Vessel Codes and Standards – 
ASME Press, 2014 ([16]) 

 In the frame Chapter 11 “Pipeline Integrity and Security”, paragraph 11.9 “Defect Assessment Method”, 
subparagraph 11.9.6 “Worked Example”, Page 11-33 (354), “Example 3”. 

“The hoop stress at the highest operating pressure is found from the Barlow equation  

𝜎𝑝 = 𝑝𝐷 2𝑡⁄  

to be 37,440 psi and at the lower operating pressure = 4000 psi making the stress excursion per cycle 
equivalent to 33.44 ksi.” 

10.  ASME B31.8-2018 – Gas Transmission and Distribution Piping Systems ([17]) 

 Art. 805.2.3, page 9,  

“hoop stress, 𝑆𝐻 [psi (MPa)]: the stress in a pipe of wall thickness, 𝑡 [in. (mm)], acting circumferentially in 
a plane perpendicular to the longitudinal axis of the pipe, produced by the pressure, 𝑃 [psig (kPa)], of the 
fluid in a pipe of diameter, 𝐷 [in. (mm)], and is determined by Barlow’s formula (U.S. Customary Units): 
𝑆𝐻 = 𝑃𝐷 2𝑡⁄ , where D is the nominal outside diameter of pipe (see 833.7, page 32) …” 

11.  API Specification 5L – Specification for Line Pipe – 43rd edition – 2004 ([18]) 

 Appendix K.1, page 151, “modified Barlow’s equation in 9.4.3”, page 18 

“As a measure to prevent distortion when testing at pressures equivalent to stresses in excess of 90% of 
specified minimum yield strength, the manufacturer may apply a calculation to compensate for the forces 
applied to the pipe end that produce a compressive longitudinal stress. The calculation in this appendix is 
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based on Barlow's equation (see 9.4.3, 𝑃 = 2𝑆𝑡 𝐷⁄ ) modified by a factor based on the Maximum Shear 
Theory (see note). The calculation may be applied only when testing in excess of 90% of the specified 
minimum yield strength. In no case may the gage pressure for testing be less than that calculated using 
Barlow's equation at 90% of specified minimum yield strength. 

Note: The calculation is an approximation of the effective hoop stress (SE), which is practical for application under 
mill pipe testing conditions. Other calculations provide closer approximations of effective hoop stress but are 
complex and therefore impractical for application. 

12. Troitsky, M.S. – Tubular Steel Structures – Theory and Design – Second Edition – The James F. Lincoln Arc 
Welding Foundation, 1990 ([40]) 

 Paragraph 9.3.1.2 at page 9-2: 

“9.3.1.2 Barlow’s Formula 

An empirical formula for internal fluid pressure which gives results on the side of safety for all practical 
thickness ratios is that known as Barlow’s formula. This formula is similar to the common formula except 
that the outside diameter of the pipe is used instead of the inside. Barlow’s formula is 𝑓𝑐 = 𝑝𝐷 2𝑡⁄ . 

While Barlow’s formula is widely used because of its convenience of solution, it was not generally 
considered to have any theoretical justification until formulae based on the maximum-energy-of-
distortion theory showed that for a thin-walled pipe with no axial tension, Barlow’s formula actually is 
theoretically correct. Since most commercially important pipes have a ratio of wall thickness to outside 
diameter less than 0.10, Barlow’s formula for thin-walled pipes is of great significance. Comprehensive 
bursting tests on commercial steel pipe have demonstrated that the formula predicts the pressure at 
which the pipe will rupture with an accuracy well within the limits of uniformity of commercial pipe 
thickness. In general, failure occurred at a pressure about three percent higher than predicted. Barlow’s 
formula has been employed in the ASA Standards for Wrought Iron and Wrought Steel Pipe and the ASA 
Code for Pressure Piping.” 

The same equation is assigned to Mariotte in the following publications, all from Italian authors:  

1.  Annaratone, D. - Pressure Vessel Design – Springer, 2007 ([19])  

 3.1 “General Design Criteria” page 47: 

“Before discussing the problem based on the above considerations, it may be useful to recall Mariotte’s 
well-known method. Let us consider the semi cylinder of unitary length shown in Fig. 3.1. The pressure 
resultant along x is 

𝐹 =  𝑝𝐷𝑖 (3.1) 

whereas it is obviously zero along y.  

 
We must apply two equal forces equal to F/2 at the ends of the semi cylinder to balance this thrust; if we 
assume that the hoop stress in the cylinder is constant through the thickness, we have: 

𝜎𝑡  =
 𝐹/2

𝑠
=

𝑝𝐷𝑖

2𝑠
     (3.2) 
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where 𝑠 is the thickness. 

If the hoop stress is equal to the basic allowable stress 𝑓 we obtain 

𝑠 =  
𝑝𝐷𝑖

2𝑓
      (3.3) 

Equation (3.3) is Mariotte’s formula, and it does not take into account the variation of σt through the 
thickness, as well as the presence of the other two principal stresses 𝜎𝑟 and 𝜎𝑎; therefore it cannot be used 
for the sizing of the cylinder. …” 

In the frame of “Cylinder Under Internal Pressure”, Page 60 (70),  

From (3.84) we obtain the following equation, where 𝐷𝑚 is the average diameter: 

𝐷𝑚

𝑠
=

2𝑓

𝑝
    (3.85) 

and 

𝑠 =
 𝑝𝐷𝑚

2𝑓
  (3.86) 

Equation (3.86) is the so-called average diameter equation; let us compare it with Mariotte’s (3.3); with 
regard to the latter, the average diameter substitutes the inside one. Equation (3.86) can also be rewritten 
as follows: from (3.85), and considering the outside diameter 

𝑝(𝐷𝑒  −  𝑠)  =  2𝑓𝑠,     (3.87) 

and hence 

𝑠 =  
𝑝𝐷𝑒

2𝑓 + 𝑝
    (3.88) 

Equation (3.88) is used in many national codes and also in the ISO Code; a comparison with (3.81) (𝑠 =
𝑝𝐷𝑒 [2𝑓 + (1 + 0.15 𝑝 𝑓⁄ )𝑝]⁄ ) shows that they differ in the term between parentheses absent in (3.88). 

Page 342 (350) 

“… In fact, (8.128) corresponds to the following: 

𝑠0𝐿′ =
𝑝

𝑓

𝐷𝑖

2
𝐿′       (8.129) 

then 

𝑠0  =  
𝑝𝐷𝑖

2𝑓
   (8.130) 

also known as Mariotte’s equation. 

2.  Vullo, V. – Circular Cylinders and Pressure Vessels, Stress Analysis and Design – Springer, 2014 ([20]) 

 Mariotte mentioned in para. 1.2 page 5,  

“If, as is fairly frequent in design applications, external pressure is zero (𝑝𝑒  =  0) or internal pressure is 
zero (𝑝𝑖  =  0), Eq. (1.5) leads to the following respective relations: 

𝜎𝑡 =
𝑝𝑖𝑑𝑖

2𝑠
𝑎𝑛𝑑 𝜎𝑡 =

𝑝𝑒𝑑𝑒

2𝑠
      (1.7) 

These are Mariotte’s formulas for boilers.” 

Para. 1.5 page 17 

“We will now consider radial equilibrium condition for the small element shown in Fig. 1.5, which is 
assumed to be of unitary axial length, under internal pressure 𝑝𝑖  and open at the ends, so that we will have 
𝜎𝑧  =  0. Following the same procedure used to arrive at Mariotte’s formulas for boilers (1.7), but 
considering a circumferential small element of a circular cylinder having angular width 𝑑𝜃 rather than 𝜋 
as in Fig. 1.1b and designating the resultant of stresses rt distributed along the radius as 

𝐹 = ∫ 𝜎𝑡

𝑟𝑒

𝑟𝑖

𝑑𝑟 (1.22) 
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we obtain the relation 

𝑝𝑖𝑟𝑖𝑑𝜃 =  2𝐹𝑠𝑖𝑛 
𝑑𝜃

2
  (1.23) 

which, given 𝑠𝑖𝑛 (𝑑𝜃 2⁄ ) ≅ 𝑑𝜃 2⁄ , leads to: 

𝑝𝑖𝑟𝑖 =  𝐹    (1.24) 

3.  Risitano, A. – Mechanical Design – CRC Press, 201 ([21]) 

 Page 331  

“Mariotte’s generic formula tells us that the tangential stress generated in cylindrical tubes undergoing 
internal pressure is  

𝜎𝑡 = 𝑝∗ ∙ 𝑑∗ 2𝑠⁄  

Page 424, Marriotte formula (yes, with two r): 

“For narrow pipes, the tangential tension 𝜎𝑡 is considered constant over the whole tube thickness (Figure 
17.1). So, the Marriotte formula can now be applied:  

𝜎𝑡 =
𝑝𝑑𝑖

2𝑠
 

where 𝑑𝑖  is the internal pipe diameter, s is thickness, and p is the internal fluid pressure.” 

Pag. 427 Marriotte formula (again with two r), the same at page 660 

“17.4 SOME OIL PIPE CONSIDERATIONS 

Fuel pipes are subject to checks defined by the API standards to guarantee reliability, given the con-
sequences of any loss. Generally, these pipes are thin, so for a nominal diameter of DN = 500 mm, thickness 
would be 6.5 mm. So, here the Marriotte formula can be applied.” 

Also, the following university course notes claim for the “Mariotte’s formula” (see the URL below); in some case, 
these notes claim also for an improbable “Boyle-Mariotte’s formula”: 

http://dma.ing.uniroma1.it/users/broggiato/cdm/roma/no/ecdm/dispense-2012-
13/11-Serbatoi.pdf 

Mariotte’s formula 

http://unica2.unica.it/rdeidda//studenti/Acq_Fog_A4/Cap_A09_Tubazioni.pdf Mariotte’s formula 

https://it.wikipedia.org/wiki/Tubo_per_condotte Mariotte’s formula 

http://host.uniroma3.it/docenti/volpi/Infrastrutture_idra_2/Tubazioni.pdf Mariotte’s formula 

http://www.dimnp.unipi.it/forte-
p/Materiale_didattico/PAC_LMVeicoli/Cilindri%20in%20pressione.pdf 

Mariotte’s formula 

https://it.wikipedia.org/wiki/Serbatoio_cilindrico Mariotte’s formula 

http://corsiadistanza.polito.it/on-line/CMM/pdf/U6_L2.pdf Boyle-Mariotte’s formula 

http://dma.ing.uniroma1.it/users/broggiato/cdm/roma/no/ecdm/dispense-2012-13/11-Serbatoi.pdf
http://dma.ing.uniroma1.it/users/broggiato/cdm/roma/no/ecdm/dispense-2012-13/11-Serbatoi.pdf
http://unica2.unica.it/rdeidda/studenti/Acq_Fog_A4/Cap_A09_Tubazioni.pdf
https://it.wikipedia.org/wiki/Tubo_per_condotte
http://host.uniroma3.it/docenti/volpi/Infrastrutture_idra_2/Tubazioni.pdf
http://www.dimnp.unipi.it/forte-p/Materiale_didattico/PAC_LMVeicoli/Cilindri%20in%20pressione.pdf
http://www.dimnp.unipi.it/forte-p/Materiale_didattico/PAC_LMVeicoli/Cilindri%20in%20pressione.pdf
https://it.wikipedia.org/wiki/Serbatoio_cilindrico
http://corsiadistanza.polito.it/on-line/CMM/pdf/U6_L2.pdf
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http://www.dimnp.unipi.it/leonardo-
bertini/Corsi/CAC/Materiale%20didattico/Lez3-Gusci_sottili_assialsimmetrici.pdf 

Boyle-Mariotte’s formula 

http://www.dimnp.unipi.it/leonardo-
bertini/Corsi/CMM/Materiale%20Didattico/2013-14/Lezioni%20su%20BPVC.pdf 

Boyle-Mariotte’s formula 

https://www.designapproval.org/design/calcolo-degli-spessori/ Boyle-Mariotte’s formula 

The internet search with key-words “Mariotte’s equation” (>>) shows that the Mariotte formula as claimed here 
above appears only on Italian sites; on abroad sites the Mariotte’s name is associated, along with Boyle’s, to the 
perfect gases or compressible gases law. The confusion is increased by Risitano’s handbook (ref. [21]) where at 
pages 424, 427 and 660 the “Marriotte formula” (with double r) is mentioned; while at page 331 the “Mariotte’s 
generic formula” is given. 

In this lexical confusion, the most ingenious (and funny) solution is the one proposed by the site 
http://www.larapedia.com/fisica_glossario/formula_di_Mariotte.html where you can read that the English 
translation of “Mariotte’s formula” is “Barlow’s equation”. 

A similar result is got with a web research run with French keywords, namely “La formule de Mariotte pour les 
tuyauteries” (>>), or “La formule de Mariotte pour l’épaisseur des tuyauteries” (>>). The first research outcome is 
related only to the compressed gas law; the second outcome returns something related to the piping thickness 
calculation, but in no case linked to Mariotte. Link to Mariotte are found in the following three cases, which anyhow 
have nothing to do with the hoop stress formula: 

1. In book «Traité de la construction des ponts», Livre troisième, by Emiland-Marie Gauthey (Leduc, 1843) (>>), 
Mariotte is mentioned at page 19 in relation to the experiments carried out to determine the thickness of 
piping, without presenting any formula for this determination; 

2. In book « Architecture hydraulique, ou l’art de conduire, d’élever et de ménager les eaux … », Tome second, 
by M. Belidor, 1782, Mariotte is referenced several times, with reference to his experiences with piping, but 
never the formula attributed to him is provided; 

3. In handbook « Manuel de l’Ingénieur des ponts et chaussées » by A. Debauve (Dunod, 1875), Mariotte is 
mentioned at page 187 only for the compressed gas law; the equation to compute the thickness of a concrete 
conduct (𝐸 = 𝐷 ∙ 𝐻 30⁄  with 𝐷 = diameter and 𝐻 = pressure in m) shown at page 183 is conceptually similar to 
the one under discussion, but the author does not attribute it to Mariotte, as well as it happens at page 197 
where the author presents the classical formula ℎ𝑑 = 2𝑅 ∙ 𝑒, once again without mentioning Mariotte. 

Even the research with keywords “calcul d'épaisseur de tuyauterie en pression” (>>) does not return any connection 
to Mariotte, as well as the web research with keywords “Théorie de dimensionnement d'épaisseur de tuyauterie en 
pression” (>>). 

Even in current French sites and books coeval with Mariotte, in conclusion, there is no memory of the so called 
“Mariotte’s formula” to compute the piping thickness. 

A further analysis of the books coeval to Mariotte, performed following the bibliography of the book “La colonne: 
nouvelle histoire de la construction” by Roberto Gargiani (>>), provide the following outcome: 

1. « Histoire de l’Académie Royale des Sciences », Année MDCCII (1702), Paris 1743 : 
a) « Sur la résistance des solides », pp. 102-118 (pdf bnF Gallica pp. 117-133, >>, pdf Google pp. 120-136, >>) ;  
b) « Sur la résistance des cylindres creux et solides », p. 120 (p. 135 digital Edition by BnF Gallica, >>, and p. 

138 digital Edition by Google, >>). Note: in some bibliography, this article is attributed to A. Parent, 
whereas Parent is mentioned as being the author of a formula for the sizing of solid and hollow cylinders. 

c) Varignon, Pierre, « De la résistance des solides en général pour tout ce qu’on peut faire d’hypothèses 
touchant la force ou la ténacité des fibres des corps à rompre; et en particulier pour les hypothèses de 
Galilée et de Mariotte », Mémoires de l’Académie Royale des Sciences, pp. 66-94 (pp. 222-250 BnF Gallica, 
>>,  and pp. 226.254 pdf Google, >>) 

2. « Histoire de l’Académie Royale des Sciences », Année MDCCVII (1707), Paris 1730 : 
a) « Sur la résistance des tuyaux cylindriques pleins d’eau », pp. 126-131 (pp. 136-141 pdf BnF Gallica, >>, e 

pp. 142-147 pdf Google, >>). Note: This article too is in some bibliography attributed to Parent, whereas 

http://www.dimnp.unipi.it/leonardo-bertini/Corsi/CAC/Materiale%20didattico/Lez3-Gusci_sottili_assialsimmetrici.pdf
http://www.dimnp.unipi.it/leonardo-bertini/Corsi/CAC/Materiale%20didattico/Lez3-Gusci_sottili_assialsimmetrici.pdf
http://www.dimnp.unipi.it/leonardo-bertini/Corsi/CMM/Materiale%20Didattico/2013-14/Lezioni%20su%20BPVC.pdf
http://www.dimnp.unipi.it/leonardo-bertini/Corsi/CMM/Materiale%20Didattico/2013-14/Lezioni%20su%20BPVC.pdf
https://www.designapproval.org/design/calcolo-degli-spessori/
https://www.google.it/search?q=mariotte+equation&sxsrf=ALeKk03hxRKtljf8kJsfB4f7SM9Y0jvDqw:1596561378109&ei=4pcpX4yKBrLosAfeupW4Bw&start=10&sa=N&ved=2ahUKEwiMg7fOhoLrAhUyNOwKHV5dBXcQ8tMDegQIDBA1&biw=1316&bih=907
http://www.larapedia.com/fisica_glossario/formula_di_Mariotte.html
https://www.google.it/search?sxsrf=ALeKk02VefIhSATbz_-VLXrcdTiMal7sIQ%3A1598892215940&source=hp&ei=tyhNX-adN_GNlwTApKbwDQ&q=La+formule+de+Mariotte+pour+les+tuyauteries&oq=La+formule+de+Mariotte+pour+les+tuyauteries&gs_lcp=CgZwc3ktYWIQDDoHCCMQ6gIQJzoJCCMQ6gIQJxATUPMVWPMVYIknaAJwAHgAgAGCAYgBggGSAQMwLjGYAQCgAQKgAQGqAQdnd3Mtd2l6sAEK&sclient=psy-ab&ved=0ahUKEwim1cDU8cXrAhXxxoUKHUCSCd4Q4dUDCA0
https://www.google.it/search?sxsrf=ALeKk03NVZ79tgTOWciv2BgOsBhodXKMJw%3A1598892445463&source=hp&ei=nSlNX5v_GY6GjLsPj6SrgAs&q=La+formule+de+Mariotte+pour+l%27epaisseur+des+tuyauteries&oq=La+formule+de+Mariotte+pour+l%27epaisseur+des+tuyauteries&gs_lcp=CgZwc3ktYWIQAzoHCCMQ6gIQJzoJCCMQ6gIQJxATOgQIIxAnOgcIIxCwAhAnUM-JAVjN-wFg7oUCaAFwAHgAgAHtAYgBqw6SAQU4LjguMZgBAKABAqABAaoBB2d3cy13aXqwAQo&sclient=psy-ab&ved=0ahUKEwjbwfnB8sXrAhUOA2MBHQ_SCrAQ4dUDCAk&uact=5
https://books.google.it/books?id=GChRAAAAYAAJ&pg=PA19&lpg=PA19&dq=La+formule+de+Mariotte+pour+l%27epaisseur+des+tuyauteries&source=bl&ots=XSns8sl18Q&sig=ACfU3U208RB_IwPRxdTBM_jP0T2HYSIcHg&hl=it&sa=X&ved=2ahUKEwjIr-7W-MXrAhWFsKQKHbUzAJwQ6AEwEnoECAIQAQ#v=onepage&q=La%20formule%20de%20Mariotte%20pour%20l'epaisseur%20des%20tuyauteries&f=false
https://www.google.it/search?q=calcul+d%27%C3%A9paisseur+de+tuyauterie+en+pression&sxsrf=ALeKk03xx6PYNWI0K9Pty3qMPHRoCFK4GA:1598906762009&ei=imFNX5EM56GuBKSIu5AH&start=10&sa=N&ved=2ahUKEwiR-c_sp8brAhXnkIsKHSTEDnIQ8tMDegQIDhA0&biw=1556&bih=889
https://www.google.it/search?q=Theorie+de+dimensionnement+d%27%C3%A9paisseur+de+tuyauterie+en+pression&sxsrf=ALeKk03exbIo_xF0znwozYkqrfO2QBQy4w:1598907182223&ei=LmNNX7CmDYi0sAeB6pboCA&start=10&sa=N&ved=2ahUKEwiw9f-0qcbrAhUIGuwKHQG1BY0Q8tMDegQIDRA0&biw=1556&bih=889
https://books.google.it/books?id=Y_QRmsMjQ80C&pg=PA147&lpg=PA147&dq=La+formule+de+Mariotte+pour+l%27epaisseur+des+tuyauteries&source=bl&ots=Gosw20J_4C&sig=ACfU3U2FHqUsna5Yg9kNX0FX6V68KiUkSA&hl=it&sa=X&ved=2ahUKEwj8gcqWp8brAhXmtYsKHU_VBfIQ6AEwEHoECAkQAQ#v=onepage&q=La%20formule%20de%20Mariotte%20pour%20l'epaisseur%20des%20tuyauteries&f=false
https://gallica.bnf.fr/ark:/12148/bpt6k3505b
https://books.google.it/books/about/Histoire_de_l_Academie_royale_des_scienc.html?id=P_Wgj2sMY-4C&redir_esc=y
https://gallica.bnf.fr/ark:/12148/bpt6k3505b
https://books.google.it/books/about/Histoire_de_l_Academie_royale_des_scienc.html?id=P_Wgj2sMY-4C&redir_esc=y
https://gallica.bnf.fr/ark:/12148/bpt6k3505b
https://books.google.it/books/about/Histoire_de_l_Academie_royale_des_scienc.html?id=P_Wgj2sMY-4C&redir_esc=y
https://gallica.bnf.fr/ark:/12148/bpt6k3489j
https://books.google.it/books/about/Histoire_de_l_Acad%C3%A9mie_Royale_des_Scien.html?id=Imw6FtgZ7AgC&redir_esc=y
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Parent is once again mentioned as the author of a formula to determine the thickness of piping subjected 
to the water weight.  

b) A. Parent, « Des résistances des tuyaux cylindriques pour des charges d’eau et des diamètres donnés », 
Mémoire des Mathématiques et de Physique, pp. 105-111 (pp. 321-327 pdf Google, >>,  pp. 315-321 pdf 
BnF Gallica, >>), where the author (critically) review the Mariotte’s rule and makes reference to the book 
«Divers ouvrages de mathématiques et de physiques»  of the Académie Royale de Sciences, 1693 which 
published a paper from Mariotte «Règles pour les jets d’eau» pp. 508-509 (pp. 526-527 pdf BnF Gallica, >>) 

3. « Histoire de l’Académie Royale des Sciences », Année MDCCIX (1709), Paris 1733 : 
a) Anonymous review, « Sur un problème de statique », pp. 109-112 (pp. 119-122 pdf BnF Gallica, >>, and  pp. 

129-132 pdf Google, >>) (Fonte : https://architettura.unige.it/bma/IT/AUTORI/it_autori_Varignon_P.html) 
b) Varignon, Pierre, « Problème de statique », Mémoires de l’Académie Royale des Sciences, Année 1709, 

Paris 1733, pp. 351-354 (pp. 502-505 pdf BnF Gallica, >>, and pp. 521-524 pdf Google, >>) 
4. « Histoire de l’Académie Royale des Sciences depuis son établissement en 1666 jusqu’à 1686 », Tome I 

a) E. Mariotte, « Mathématiques, Hydrostatique », pp. 69-72 (pp. 87-90 pdf BnF Gallica, >>) 
b) E. Mariotte, « Hydrostatique », pp. 170--172 (pp. 190-192 pdf BnF Gallica, >>)  
c) E. Mariotte, « Mathématique (Géométrie, Mécanique, ecc.) …  2. Observation sur la résistance des tuyaux 

de conduite d’eau », 1666, p. 225 (p. 245 pdf BnF Gallica, >>)  
5. E. Mariotte, « II. Discours, De la force des Tuyaux de conduite, et de l’épaisseur qu’ils doivent avoir suivant leur 

matière et la hauteur des réservoirs », Traité du mouvement des eaux, pp. 348-382 (pp. 363-395 pdf Google >>, 
Wikisource >>);  

6. E. Mariotte, Œuvres, pp. 460-473 (p. 510-523 pdf Google >>, p. 508-521 pdf BnF Gallica, Tome 1 >>) 

All these papers have many references to Mariotte, but never attributing to him the paternity of the formula for 
piping hoop stress or thickness determination to which Parent and Varignon look rather to work and study. 

Finally, it is noted that also the book testo «Mariotte, savant et philosophe (1684): analyse d’une renommée» by 
Pierre Costabel, (Google >>), even describing in detail Mariotte’s activity on piping resistance, nevertheless does 
not mention any formula that can be attributed to him (page 120). 

Barlow’s Formula derivation 

Barlow’s method 

Let’s consider a cylinder subjected to internal pressure 𝑝. Let’s divide the 
circumference into arches of infinitesimal length 𝑐 as shown in the figure 
aside (from ref. [31]). On each arc element the pressure 𝑝 is applied along 
the radial direction (normal to the arc) developing the radial force 𝐹 = 𝑝 ∙
𝑐. This force can be resolved into a component parallel to the axis AB and 
another component parallel to the axis CD. Let’s consider now the 
semicircle DBC. The sum of all forces parallel to AB shall be equal to the 
sum of all forces normal to the segments 𝑎𝑑, 𝑏𝑐 and so on. The sum of the 
length of this segments is equal to the diameter CD. The sum of the force 
components parallel to AB is therefore equal to 𝑝 ∙ 𝐷, where 𝐷 is the 
diameter CD. This force is sustained by the thickness of material in C and D, 
from which it follows that the stresses (that Barlow designates as “direct 
strains” terms currently used for the unitary deformations, see ref. [6] and 

[31]) in D shall be equal to the product of the pressure by the radius (the cylinder is supposed to have unitary 
depth). 

To compute the thickness required to sustain this force, Barlow adopted the following approach. Let us imagine the 
circular ring divided into a series of circumferences of very small thickness side by side each other. Let us consider 
all circumferences on the right of diameter CD. Each circular lamina, being subject to the stress developed by the 
pressure, experiences a stretch proportional to the stress. Since the external circular lamina contribute less to 
sustain the pressure, they are less stressed and less stretched. Because of the stretching the radii of each fiber 
increase, keeping the area of the section unchanged, since the quantity of material cannot change. Assuming that 

https://books.google.it/books/about/Histoire_de_l_Acad%C3%A9mie_Royale_des_Scien.html?id=Imw6FtgZ7AgC&redir_esc=y
https://gallica.bnf.fr/ark:/12148/bpt6k3489j
https://gallica.bnf.fr/ark:/12148/bpt6k5493994j/f19.image.texteImage
https://gallica.bnf.fr/ark:/12148/bpt6k34859
https://play.google.com/store/books/details/Acad%C3%A9mie_des_sciences_Francia_Histoire_de_l_Academ?id=YXavxvFko40C
https://architettura.unige.it/bma/IT/AUTORI/it_autori_Varignon_P.html
https://gallica.bnf.fr/ark:/12148/bpt6k34859
https://play.google.com/store/books/details/Acad%C3%A9mie_des_sciences_Francia_Histoire_de_l_Academ?id=YXavxvFko40C
https://gallica.bnf.fr/ark:/12148/bpt6k56063967.texteImage
https://gallica.bnf.fr/ark:/12148/bpt6k56063967.texteImage
https://gallica.bnf.fr/ark:/12148/bpt6k56063967.texteImage
https://books.google.it/books/about/Trait%C3%A9_du_mouvement_des_eaux_et_des_aut.html?hl=nl&id=tLAUAAAAQAAJ&redir_esc=y
https://fr.wikisource.org/wiki/Livre:Mariotte_-_Trait%C3%A9_du_mouvement_des_eaux_et_des_autres_corps_fluides,_1700.djvu
https://books.google.it/books/about/Oeuvres_de_m_Mariotte_de_l_Acad%C3%A9mie_roy.html?id=14wPAAAAQAAJ&redir_esc=y
https://gallica.bnf.fr/ark:/12148/bpt6k9692103z?rk=21459;2
https://books.google.it/books?id=JDHHcw1Wh9kC&pg=PA120&dq=r%C3%A9sistance+des+tuyaux+de+conduite+d%27eau,+Histoire+de+l%27Acad%C3%A9mie+Royale+Des+Sciences+ann%C3%A9e+1666&hl=it&sa=X&ved=2ahUKEwi8zqOuo8HrAhWGjosKHRP3D-cQ6AEwAXoECAYQAg#v=onepage&q=r%C3%A9sistance%20des%20tuyaux%20de%20conduite%20d'eau%2C%20Histoire%20de%20l'Acad%C3%A9mie%20Royale%20Des%20Sciences%20ann%C3%A9e%201666&f=false
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the internal diameter increases from 𝐷 to 𝐷 + 𝑑, and the external diameter increases from 𝐷’ to 𝐷’ + 𝑑, the 
constancy of the area gives:    

𝐷′2 − 𝐷2 = (𝐷′ + 𝑑′)2 − (𝐷 + 𝑑)2 

from which 

𝐷′2 − 𝐷2 = 𝐷′2
+ 𝑑′2

+ 2𝐷′𝑑′ − 𝐷2 − 𝑑2 − 2𝐷𝑑 

𝑑′2
+ 2𝐷′𝑑′ = 𝑑2 + 2𝐷𝑑 

𝑑′(𝑑′ + 2𝐷′) = 𝑑(𝑑 + 2𝐷) 

(𝑑′ + 2𝐷′): (𝑑 + 2𝐷) = 𝑑: 𝑑′ 

Since 𝑑 and 𝑑’ are very smaller than 𝐷’ and 𝐷, the above equation can be reduced to: 

𝐷′: 𝐷 = 𝑑: 𝑑′ 

Stretching 𝑑’ of the external fiber is proportional to stretching 𝑑 of the internal fiber as the inside diameter is 
proportional to the outside diameter. Setting the resistance as the ratio of the fiber stretch divided by its initial 
length, it follows that: 

𝐷′

𝐷
=

𝑑

𝑑′
→

𝑑

𝐷
=

𝑑′𝐷′

𝐷2
→

𝑑

𝐷
=

𝑑′

𝐷′
∙

𝐷′2

𝐷2
 

𝑑

𝐷
:

𝑑′

𝐷′
= 𝐷′2: 𝐷2 

The fibers’ resistance (to be read as deformation) decreases from inside to outside proportionally to the square of 
the ratio of the outside over inside diameter.  

Said 𝑟 the inside radius of the cylinder, 𝑝 the pressure, 𝑡 the metal thickness and 𝑥 the radial coordinate measured 
from the internal surface, the unitary force on the internal surface is equal to 𝑠 = 𝑝 ∙ 𝑟 (this assumption is 
dimensionally correct only in case of 𝑡 =  1). The unitary force is proportional to the resistance (𝑠 ∝ 𝑑 𝐷⁄ ), defined 
as the ratio of stretch over the initial length, then applying the above conclusions to the radial positions 𝑟 and 𝑟 +
𝑥: 

𝑠: 𝑠𝑥 = (𝑟 + 𝑥)2: 𝑟2 

from which: 

𝑠𝑥 = 𝑠 ∙
𝑟2

(𝑟 + 𝑥)2
 

The sum of all unitary forces acting through the thickness therefore is: 

𝑆 = ∫ 𝑠 ∙
𝑟2

(𝑟 + 𝑥)2

𝑡

0

𝑑𝑥 = 𝑠 ∙ 𝑟2 [
−1

(2 − 1)(𝑟 + 𝑡)2−1
−

−1

(2 − 1)(𝑟)2−1] = 𝑠 ∙ 𝑟2 [
1

𝑟
−

1

(𝑟 + 𝑡)
] =

𝑠𝑟𝑡

𝑟 + 𝑡
 

The sum of the unitary forces is then equal to the one developed by the unitary force 𝑠 when uniformly distributed 
over the equivalent thickness 𝑟𝑡 (𝑟 + 𝑡)⁄ . 

If 𝑐 is the metal resistance to cohesion and 𝑡𝑟𝑒𝑞 is the required thickness for a cylinder subject to a pressure 𝑝, the 

above equations show that the material reaction to the end pressure force is equal to the product of 𝑐 and the 
equivalent thickness over which the unitary force 𝑠 =  𝑝𝑟 is applied; in other words: 

𝑝𝑟 = 𝑐
𝑟𝑡𝑟𝑒𝑞

𝑟 + 𝑡𝑟𝑒𝑞
 

𝑝𝑟 + 𝑝𝑡𝑟𝑒𝑞 = 𝑐𝑡𝑟𝑒𝑞 

𝑡𝑟𝑒𝑞 =
𝑝𝑟

𝑐 − 𝑝
 

This demonstration is based on the error to assume that the stress on the inside radius is equal to 𝑝𝑟 which is an 
assumption not satisfying the equilibrium. 

Goodman ’s demonstration 

The demonstration that Goodman presents in his book (ref. [30]) is the following. 
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The radii of a cylinder subjected to internal pressure  𝑝 increase their length because of the stretching to which 
they are submitted. Said 𝑛𝑥 the unitary increase of length (the deformation or strain) at the radial position 𝑥, the 
internal and external radii change their initial values  𝑟𝑖 and 𝑟𝑜, respectively, to the final values 𝑟𝑖 + 𝑛𝑖𝑟𝑖 = 𝑟𝑖(1 + 𝑛𝑖) 
and 𝑟𝑜 + 𝑛𝑜𝑟𝑜 = 𝑟𝑜(1 + 𝑛𝑜). Since the area of the section does not change, and assuming that with small 
deformation, the circular shape does not change too (which is the Barlow’s hypothesis), we can write: 

𝜋(𝑟𝑜
2 − 𝑟𝑖

2) = 𝜋[𝑟𝑜
2(1 + 𝑛𝑜)2 −  𝑟𝑖

2(1 + 𝑛𝑖)2] 

from which it follows: 

𝑟𝑖
2(𝑛𝑖

2 + 2𝑛𝑖) = 𝑟𝑜
2(𝑛𝑜

2 + 2𝑛𝑜) 

Since 𝑛𝑥 is very small, its square is negligible, so that: 

𝑟𝑖
2

𝑟𝑜
2

=
𝑛𝑜

𝑛𝑖
 

The same conclusion of Barlow is obtained, that the deformations are proportional to the square of the reciprocal 
of their radii. 

Since the material is elastic, the deformations are proportional to the 
stresses; therefore: 

𝑟𝑖
2

𝑟𝑜
2

=
𝑓𝑜

𝑓𝑖
→ 𝑓𝑖𝑟𝑖

2 = 𝑓𝑜𝑟𝑜
2 

This equation allows the calculation of the stress acting on the circular 
lamina of infinitesimal thickness 𝑑𝑟 at the generic radius 𝑟: 

𝑓 =
𝑓𝑖𝑟𝑖

2

𝑟2
𝑑𝑟 

The sum of all stress acting through the entire thickness is: 

𝑆 = ∫
𝑓𝑖𝑟𝑖

2

𝑟2
𝑑𝑟

𝑟𝑜

𝑟𝑖

= 𝑓𝑖𝑟𝑖
2 [

1

𝑟𝑖
−

1

𝑟𝑜
] = 𝑓𝑖𝑟𝑖 − 𝑓𝑖

𝑟𝑖
2

𝑟𝑜
= 𝑓𝑖𝑟𝑖 − 𝑓𝑜𝑟𝑜 

Since this global stress is due to the pressure acting on the inside radius which generates the force  𝑝𝑟𝑖, it follows: 

𝑝𝑟𝑖 = 𝑓𝑖𝑟𝑖 − 𝑓𝑜𝑟𝑜 = 𝑓𝑖𝑟𝑖 − 𝑓𝑖

𝑟𝑖
2

𝑟𝑜
 

𝑝𝑟𝑜 = 𝑓𝑖𝑟𝑜 − 𝑓𝑖𝑟𝑖 = 𝑓𝑖𝑡 

We obtain then a formula different than Barlow’s one which did not properly account for the equilibrium. This 
formula is like the one for thin cylinders, with the difference that the internal radius is replaced by the outside 
radius and the stress at the internal radius replace the membrane (average) stress. Goodman’s conclusion clarifies 
how the outside formula generated showing that it is based on inappropriate similitude since the stress handled in 
the thin cylinders is not the maximum value at the internal side, but the average one. 

If in the above equation the internal radius of the second term is replaced the following is obtained:  

𝑝𝑟𝑖 = 𝑓𝑖𝑟𝑖 − 𝑓𝑜𝑟𝑜 = 𝑓𝑜

𝑟𝑜
2

𝑟𝑖
− 𝑓𝑜𝑟𝑜 = 𝑓𝑜

𝑟𝑜
2 − 𝑟𝑜𝑟𝑖

𝑟𝑖
= 𝑓𝑜

𝑟𝑜

𝑟𝑖
𝑡 = 𝑓𝑡 

We get again the same equation as for thin cylinder, with the internal radius and the average stress 𝑓 (as for thin 
cylinder), as we should have expected since the force to be equilibrated in both cases act over the internal diameter. 

Although resolving the issue of the missing equilibrium in the original Barlow’s calculation, Goodman has not 
realized that, to get an effective equivalence between the two cases of thin and thick cylinders, it is necessary to 
consider the average stress (membrane) through the thickness. For thick cylinders, the average stress is:  

𝑓 =
𝑆

𝑡
=

𝑓𝑖𝑟𝑖 − 𝑓𝑜𝑟𝑜

𝑡
=

𝑓𝑜
𝑟𝑜

2

𝑟𝑖
− 𝑓𝑜𝑟𝑜

𝑡
=

𝑓𝑜
𝑟𝑜

2 − 𝑟𝑜𝑟𝑖
𝑟𝑖

𝑡
= 𝑓𝑜

𝑟𝑜

𝑟𝑖
 

The effective comparison of the two cases should have been carried out in this way. 
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Discussion 

The paragraphs above clearly show that the Barlow’s and Mariotte’s formulas, as used in literature, are practically 
identical. 

The review of the original work of both scientists shows that Mariotte enunciated the rule without specifying 
neither the principle of the rule nor any formula, whereas Barlow obtained a formula that is quite similar to the 
one currently used by the design codes, but based upon a not correct assumption.  

The Barlow’s formula is almost exclusively recalled with this name by the pressure piping handbooks only. The 
pressure vessel handbooks, even though making use of the equation mathematics, never designate it as Barlow’s 
formula. Practically all textbooks acknowledge as Barlow’s formula that with the outside diameter (see Kellogg, ref. 
[9], Peng&Peng, ref. [10], Anvil, ref. [11], Ellenberger, ref. [12], Nayyar, ref. [13] , Becht, ref. [15], Rao, ref. [16] and 
[34] , ASME B31.8, ref. [17] , API 5L, ref. [18], Troitsky, ref. [40]). 

For some authors, the formula was developed for thin cylinders (see, Ellenberger, ref. [12],  Nayyar, ref. [13]); for 
others, it was developed for thick cylinders (see, Adams, ref. [22], ISO 10400, ref. [27]). 

Nayyar ([13]) states that using the outer diameter in this formula was established by advanced analyses. Troitsky 
([40]) states that the formula originally had an empirical background with no theoretical demonstration. ASME 
B31.8 ([17]) for piping in plastic material (article 842.2.1) makes use of the mean diameter. 

For some authors (see, Zhu and Leis, ref. [39], e Troitsky, ref. [40]) the bursting pressure computed with the Barlow’s 
formula has great reliability such to justify its large use. Other authors (see, Adams, ref. [22]) states that the formula 
has a poor reliability, especially for thin wall piping. 

A so simple formula with a such muddled history! 

Regarding the muddling aspect, it is interesting to observe that, because of the Barlow wrong hypothesis, described 
above, the denominator of Barlow’s original formula does not contain the material strength only (the allowable 
stress), but the strength deducted the applied pressure. It appears that, moving from a wrong assumption, for the 
calculation of the required thickness, Barlow proposed a formula having the same structure than the one currently 
used by the modern design codes, the so-called Boardman’s formula ([8] with 𝑌 =  1 (v. ref. [9]): 

𝑆 =  
𝑝𝑅𝑖

𝑡
+ 𝑌𝑝 

Let us consider the design formula (1) of ASME VIII-1. Article UG-27: 

𝑡 =
𝑃𝑅

𝑆𝐸 − 0.6𝑃
 

If we set 𝑐 = 𝑆𝐸, being 𝑅 the inside radius, that adopted by ASME VIII-1 is the Boardman formula with 𝑌 =  0.6, 
that coincides with the Barlow’s formula as soon as we set 𝑌 =  1.0. 

The same structure is adopted by formula (3) of ASME B31.1 art. 104.1.2  

𝑡 = 𝑡𝑚 − 𝐴 =
𝑃𝐷𝑜

2(𝑆𝐸 + 𝑃𝑦)
 

If we set  𝑦 = 0.4 (applicable to all steel below 900°F, not in creep regime), we obtain the formula (1) of Appendix 
1 of ASME VIII-1 

𝑡 =
𝑃𝑅𝑜

𝑆𝐸 + 0.4𝑃
 

Even though present in the Barlow’s original formula, the pressure 𝑃 disappears from the denominator in all cases 
where the Barlow’s formula is explicitly identified as such. That occurs in textbooks, but also in codes (see, standard 
ASME B31.8, article 805.2.3). What is currently mentioned as Barlow’s formula is that obtained by Goodman in his 
book ref. [30], where it becomes (𝐷 = outside diameter):   

𝑡 =
𝑃𝑅

𝑆𝐸
=

𝑃𝐷

2𝑆𝐸
 

If this equation is resolved for pressure, we obtain: 

𝑃 =
𝑡𝑆𝐸

𝑅
=

2𝑡𝑆𝐸

𝐷
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This is the formula usually adopted for the bursting pressure calculation. 

About whether the Barlow’s equation applies to thin or thick piping, it is noted that according to ISO TR 10400 (ref. 
[27]), paragraph 6.6.2.1, the Barlow’s formula “represents the thin wall approximation to the biaxial VME / Lamé 
failure pressure. … The formula is for thick wall hoop stress, with failure taken to occur when the ID stress reaches 
yield. … Moreover, the derivation is incorrect because it violates the equilibrium condition.” To support this 
statement, the standard refers to Goodman’s book (ref. [30]) where, at page 421, paragraph “Thick Cylinders” the 
“Barlow’s Theory” is discussed but without claiming any objection about the equilibrium violation. 

The author explains that “a thick cylinder may be dealt with by the same form of expression as a thin cylinder, taking 
the pressure to act on the external instead of on the internal radius.” This statement clarifies where the outside 
diameter Barlow’s formula sourced. The approach that Goodman used to get the final relationship is different than 
that used by Barlow. Presumably, it follows Goodman work the habit to apply the outside diameter Barlow’s 
formula to thick wall piping (i.e. with ratio 𝐷 𝑡 ≤ 20)⁄ , whereas for thin wall piping the inside diameter Barlow’s 
formula holds. 

There is no doubt that the original formula written by Barlow made use of the inside radius, as well as there is no 
doubt that with the equilibrium considerations developed by Goodman (ref. [30]) he obtained the current formula 
where, for thick wall piping, the outside diameter is used as do almost all codes and authors (see summary table of 
last paragraph). According to Goodman (ref. [30]), the Barlow’s theory (not the Barlow’s formula that is disclaimed 
and … reformulated) applies only to thick cylinders. This limitation however does not appear in Barlow’s original 
paper (ref. [31]) and seems more a Goodman’s extrapolation.  

The Goodman’s equation using the outside diameter complies with the hypothesis that the collapse occurs when 
the inside edge stress reaches the yielding limit. In other words, this formula controls and limits the inner edge 
stress, not the stress averaged through the thickness that is lower; in this sense the equation obtained by Goodman 
is conservative. 

On the other side, it can’t be neglected that to obtain such a formula Goodman (as others) did not consider that 
the complete equivalence with the thin wall piping  case is obtained only using the stress averaged through the 
thickness, not that at the inner edge, even though this value is the highest. If the equivalence is corrected in this 
way, even for thick cylinders the formula makes use of the inner diameter, as it is necessary for not violating the 
equilibrium. 

Inhomogeneous comparisons and misleading conclusion should have been avoided simply focusing on the primary 
stress (which equilibrates the external loads, in this case the pressure) and on the membrane stress (averaged 
through the thickness) concepts, considering that plastic collapse is governed by primary membrane stresses, as all 
pressure vessel design codes acknowledge when requiring the check of the primary membrane stress and 
neglecting the local stress which are necessary for compliance not for equilibrium.  

If the Barlow’s formula expression intends to identify the equation that compute the hoop stress averaged through 
the thickness that equilibrates the pressure, such a formula shall make use of the inside (not outside) diameter 
even in case of thick-walled cylinders similarly to the thin-walled ones, where the average hoop stress is , 𝜎 =
𝜎𝑜(𝑟0 𝑟𝑖⁄ ) = 𝜎𝑖(𝑟𝑖 𝑟𝑜⁄ ). This is an obvious conclusion since the equilibrium condition (the pressure act on the inside 
diameter) does not change because of the thickness dimension and stress distribution through the thickness. The 
Lamé theory, indeed, has general validity, so that the equation for thin wall are a limit solution of the general 
equations.  

How the Barlow’s formula is used in design codes 

Design formulas and their derivation 

Let us consider some of the main design codes and the design equations they use. 

1.  ASME VIII-1 UG-27, equation (1) 
𝑡 =

𝑃𝑅

𝑆𝐸 − 0.6𝑃
, 𝑃 ≤ 0.385𝑆𝐸 

2.  ASME VIII-1 Appendix I-1, equation (1) 
𝑡 =

𝑃𝑅𝑜

𝑆𝐸 + 0.4𝑃
 

3.  ASME VIII-1 Appendix I-2, equation (1) 𝑡 = 𝑅(𝑒𝑃 𝑆𝐸⁄ − 1) = 𝑅𝑜(1 − 𝑒−𝑃 𝑆𝐸⁄ ) 
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4.  ASME VIII-2 Art. 4.3.3.1, equation (4.3.1) 
𝑡 =

𝐷

2
(𝑒𝑃 𝑆𝐸⁄ − 1) 

5.  ASME VIII-3 Art. KD-221.1, equations (KD-
221.1) e (KD-221.2) 

𝑃𝐷 = 𝑚𝑖𝑛[2.5856 ∙ 𝑆𝑦 ; 1.0773 ∙ (𝑆𝑦 + 𝑆𝑢)] ∙ (𝑌0.268 − 1) , 𝑌

≤ 2.85 

𝑃𝐷 = 𝑚𝑖𝑛 (
𝑆𝑦

1.25
; 

𝑆𝑦 + 𝑆𝑢

3
) ∙ ln(𝑌) , 𝑌 > 2.85 

6.  ASME B31.1 Art. 104.1.2 
𝑡 = 𝑡𝑚 − 𝐴 =

𝑃𝐷𝑜

2(𝑆𝐸 + 𝑃𝑦)
 

7.  ASME B31.3 Art. 304.1.2 
𝑡 =

𝑃𝐷

2(𝑆𝐸𝑊 + 𝑃𝑌)
=

𝑃(𝑑 + 2𝑐)

2[𝑆𝐸𝑊 − 𝑃(1 − 𝑌)]
 

8.  ASME B31.8 Art. 841.1.1 
𝑃 =

2𝑆𝑡

𝐷
𝐹𝐸𝑇 

𝑃 =
2𝑆𝑡

𝐷 − 𝑡
𝐹𝐸𝑇, 𝑤ℎ𝑒𝑛 𝐷 𝑡⁄ < 30 

9.  EN 13445-3 Art. 7.4.2, equations (7.4.1) 
and (7.4.2) 

𝑒 =
𝑃𝐷𝑖

2𝑓𝑧 − 𝑃
=

𝑃𝐷𝑒

2𝑓𝑧 + 𝑃
 

10.  EN 13480-3 Art. 6.1, equations (6.1.1) e 
(6.1.2) 

𝑒 =
𝑝𝑐𝐷𝑜

2𝑓𝑧 + 𝑝𝑐
=

𝑝𝑐𝐷𝑖

2𝑓𝑧 − 𝑝𝑐
, 𝑝𝑒𝑟 𝐷𝑜 𝐷𝑖 ≤ 1.7⁄  

11.  EN 13480-3 Art. 6.1, equations (6.1.3) e 
(6.1.4) 𝑒 =

𝐷𝑜

2
(1 − √

𝑓𝑧 − 𝑝𝑐

𝑓𝑧 + 𝑝𝑐
) =

𝐷𝑖

2
(√

𝑓𝑧 + 𝑝𝑐

𝑓𝑧 − 𝑝𝑐
− 1),  

𝑝𝑒𝑟 𝐷𝑜 𝐷𝑖 > 1.7⁄  

It is noted that, for thin thickness cases, the adopted formula has the same structure as the original Barlow’s 
formula. On the contrary, the code B31.8 makes use of the formula that Goodman obtained applying Barlow’s 
theory. 

The common feature of these formulas is that the denominator has not only the allowable stress (the material 
strength), but its combination with the acting pressure using the sign plus or minus depending on the diameter 
used, if outside or inside.  

Farr and Jawad, in their handbook aimed at guiding on codes ASME VIII-1 and VIII-2 application (ref. [32]), state that 
ASME added the terms “0.6𝑃” and “0.4𝑃” to empirically take into account the hoop stress nonlinear distribution 
through the thickness in case of thick-walled cylinder (i.e. with 𝑡 > 0.1𝑅𝑖) and then make the adequate correction 
to the results provided by the classical formula for thin-walled cylinders. When recalling this formula, the two 
authors refer to the handbook “Mechanics of Materials” by Beer and Johnston issued on 1992 (see ref. [33] page 
478) where this equation is obtained with the usual equilibrium conditions, as all authors do, being Goodman the 
first (ref. [30]). The handbook “Companion Guide to the ASME BPVC” (ref. [34]), in paragraph 21.4.2.4, provides a 
similar explanation about term “0.6𝑃” genesis. 

As explained by the Kellogg (ref. [9], the factor “0.6” was proposed in 1944 by Boardman (ref. [8] 

The European norm replaces the correction terms “0.6P” and “0.4P” with “0.5P”. The term “0.5P” is obtained with 
the approach that Somnath Chattopadhyay describes at page 63, paragraph 5.4 “Approximate equations” of his 
textbook ref. [35]. As soon as the hoop stress equation for thin thickness is written with reference to the mean 
radius, 𝑅𝑚, and then developed with respect to the inside radius, it takes the structure of that used by EN 13445-
3. In detail: 

𝜎𝐻 =
𝑃𝑅𝑚

𝑡
=

𝑃 (𝑅𝑖 −
𝑡
2)

𝑡
=

𝑃𝑅𝑖

𝑡
−

𝑃

2
→ 𝑡 =

𝑃𝑅𝑖

𝜎𝐻 − 0.5𝑃
 

A similar explanation is provided by Bednar who in ref. [36], pages 46 and 47, obtains the equation here above and 
describes the source of the term “0.6𝑃” adopted by ASME. The use of the mean radius in the initial equation is due 
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to the membranal theory that the author uses to develop the equilibrium conditions. The correction that ASME 
adopted to be closer to the Lamé solution is therefore “±0.1𝑃” since “0.5𝑃” is already considered by the 
membranal theory. 

The membranal theory applied to thin shells assumes that the radial stress is negligible what, according to Bednar, 
is justified since on the average 𝜎𝑟 = − 𝑃 2⁄  and with thin thickness 𝑃 has usually small values.  

On the other hand, the thin thickness is a limit case of the general solution (not thin thickness). In this last case, the 
assumption of negligible radial stress is no more valid, so that the equilibrium of the infinitesimal volume is obtained 
considering both the circumferential and the radial stresses, as Fryer and Harvey show in Figure 2.8.3 of their 
textbook (ref. [37], page 37). Upon writing the equilibrium equations and applying the boundary conditions, the 
Lamé solutions for the hoop and radial stresses are obtained. Said 𝑃 the internal pressure, and 𝑅𝑖 and 𝑅𝑜 the inside 
and outside radii, the radial and hoop stresses are given by the formulas below: 

𝜎𝑟 =
𝑃𝑅𝑖

2

𝑅𝑜
2 − 𝑅𝑖

2 −
𝑃𝑅𝑖

2𝑅𝑜
2

𝑟2(𝑅𝑜
2 − 𝑅𝑖

2)
 

𝜎𝑡 =
𝑃𝑅𝑖

2

𝑅𝑜
2 − 𝑅𝑖

2 +
𝑃𝑅𝑖

2𝑅𝑜
2

𝑟2(𝑅𝑜
2 − 𝑅𝑖

2)
 

 
It is meaningful to determine the mean values through the thickness obtained with these two equations:  

∫ 𝜎𝑟𝑑𝑟 = ∫
𝑃𝑅𝑖

2

𝑅𝑜
2 − 𝑅𝑖

2

𝑅𝑜

𝑅𝑖

𝑑𝑟 − ∫
𝑃𝑅𝑖

2𝑅𝑜
2

𝑟2(𝑅𝑜
2 − 𝑅𝑖

2)
𝑑𝑟

𝑅𝑜

𝑅𝑖

=
𝑃𝑅𝑖

2

𝑅𝑜
2 − 𝑅𝑖

2
(𝑅𝑜 − 𝑅𝑖) −

𝑃𝑅𝑖
2𝑅𝑜

2

(𝑅𝑜
2 − 𝑅𝑖

2)
(−

1

𝑅𝑜
+

1

𝑅𝑖
)

=
𝑃𝑅𝑖

2

𝑅𝑜 + 𝑅𝑖
−

𝑃𝑅𝑖
2𝑅𝑜

2

(𝑅𝑜
2 − 𝑅𝑖

2)

𝑅𝑜 − 𝑅𝑖

𝑅𝑜𝑅𝑖
=

𝑃𝑅𝑖
2

𝑅𝑜 + 𝑅𝑖
−

𝑃𝑅𝑖𝑅𝑜

𝑅𝑜 + 𝑅𝑖
=

𝑃𝑅𝑖
2

𝑅𝑜 + 𝑅𝑖
(1 −

𝑅𝑜

𝑅𝑖
) = −

𝑃𝑅𝑖𝑡

𝑅𝑜 + 𝑅𝑖
 

∫ 𝜎𝑡𝑑𝑟 = ∫
𝑃𝑅𝑖

2

𝑅𝑜
2 − 𝑅𝑖

2

𝑅𝑜

𝑅𝑖

𝑑𝑟 + ∫
𝑃𝑅𝑖

2𝑅𝑜
2

𝑟2(𝑅𝑜
2 − 𝑅𝑖

2)
𝑑𝑟

𝑅𝑜

𝑅𝑖

=
𝑃𝑅𝑖

2

𝑅𝑜
2 − 𝑅𝑖

2
(𝑅𝑜 − 𝑅𝑖) +

𝑃𝑅𝑖
2𝑅𝑜

2

(𝑅𝑜
2 − 𝑅𝑖

2)
(−

1

𝑅𝑜
+

1

𝑅𝑖
)

=
𝑃𝑅𝑖

2

𝑅𝑜 + 𝑅𝑖
+

𝑃𝑅𝑖
2𝑅𝑜

2

(𝑅𝑜
2 − 𝑅𝑖

2)

𝑅𝑜 − 𝑅𝑖

𝑅𝑜𝑅𝑖
=

𝑃𝑅𝑖
2

𝑅𝑜 + 𝑅𝑖
+

𝑃𝑅𝑖𝑅𝑜

𝑅𝑜 + 𝑅𝑖
=

𝑃𝑅𝑖
2

𝑅𝑜 + 𝑅𝑖
(1 +

𝑅𝑜

𝑅𝑖
) = 𝑃𝑅𝑖 

The average stress is obtained diving by the thickness 𝑡 the two above integrals, therefore: 

𝜎𝑟 = −
𝑃𝑅𝑖

𝑅𝑜 + 𝑅𝑖
 

𝜎𝑡 =
𝑃𝑅𝑖

𝑡
 

It is noted that the formula of the average hoop stress is the same obtained for the thin thickness case, as it must 
be since the average stress is obtained with equilibrium considerations.  

Since there is no shear stress, both the above radial and hoop stresses are also main stresses. Using the Tresca 
criterion, the average equivalent stress is equal to their difference in sign; therefore: 
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𝜎𝑡𝑟 =
𝑃𝑅𝑖

𝑡
+

𝑃𝑅𝑖

𝑅𝑜 + 𝑅𝑖
=

𝑃𝑅𝑖

𝑡
+

𝑃

𝑌 + 1
 

where 𝑌 = 𝑅𝑜 𝑅𝑖⁄  

In case 𝑅𝑜 ≅ 𝑅𝑖, then 𝑌 ≅ 1.0, and we get: 

𝜎𝑡𝑟 =
𝑃𝑅𝑖

𝑡
+ 0.5𝑃 → 𝑡 =

𝑃𝑅𝑖

𝜎𝑡𝑟 − 0.5𝑃
 

which is exactly the equation that Bednar has obtained with the membranal theory and is adopted by EN 13445-3. 

Applying the von Mises criterion, in lieu of Tresca, the membrane equivalent stress becomes: 

𝜎𝑣𝑚
2

= (
𝑃𝑅𝑖

𝑡
)

2

+ (
𝑃

𝑌 + 1
)

2

+ (
𝑃𝑅𝑖

𝑡
) (

𝑃

𝑌 + 1
) 

With 𝑌 ≅ 1.0, we get: 

𝜎𝑣𝑚
2

= (
𝑃𝑅𝑖

𝑡
)

2

+ (
𝑃

1 + 1
)

2

+ (
𝑃𝑅𝑖

𝑡
) (

𝑃

1 + 1
) = (

𝑃𝑅𝑖

𝑡
+ 0.5𝑃)

2

− 0.5𝑃2
𝑅𝑖

𝑡

= (
𝑃𝑅𝑖

𝑡
+ 0.5𝑃)

2

[1 −
0.5𝑃2 𝑅𝑖

𝑡

(
𝑃𝑅𝑖

𝑡
+ 0.5𝑃)

2] = (
𝑃𝑅𝑖

𝑡
+ 0.5𝑃)

2

[1 + 𝑋] 

𝜎𝑣𝑚 = (
𝑃𝑅𝑖

𝑡
+ 0.5𝑃) √1 + 𝑋 

The 𝑋 term may be written as follows: 

𝑋 = −
0.5𝑃2 𝑅𝑖

𝑡

(
𝑃𝑅𝑖

𝑡 + 0.5𝑃)
2 = −

0.5
𝑅𝑖
𝑡

(
𝑅𝑖
𝑡 + 0.5)

2 = −
0.5

𝑅𝑖
𝑡

√0.5 (
2𝑅𝑖

𝑡 + 1)
2 = −

√0.5
𝑅𝑖
𝑡

(
2𝑅𝑖

𝑡 + 1)
2 = −

√0.5
𝑅𝑖
𝑡

1 +
4𝑅𝑖

𝑡 + (
2𝑅𝑖

𝑡 )
2

+ ⋯

 

Since lim
𝑅𝑖 𝑡⁄ →∞

𝑋 = 0, for the thin thickness case, also the von Mises criterion provides the same equation for the 

average equivalent stress: 

𝜎𝑣𝑚 =
𝑃𝑅𝑖

𝑡
+ 0.5𝑃 → 𝑡 =

𝑃𝑅𝑖

𝜎𝑣𝑚 − 0.5𝑃
 

As the thickness increases, i.e. 𝑌 increases, in Lamé’s equations, the radial stress coefficient, 𝜎𝑟 / 𝑃 =
 − 1 (𝑌 + 1)⁄ , decreases in absolute value, but less quickly that the hoop stress coefficient, 𝜎𝑡 𝑃⁄  =  1 𝑋⁄ = 𝑅𝑖 𝑡⁄ , 
so that the radial contribution to the membrane equivalent stress becomes progressively more important. In Fryer-
Harvey textbook (ref. [37]), the Table 2.8.1 shows how the ratio of maximum (at inside radius) hoop stress to 
average hoop stress (obtained with thin piping equation) increases with the ratio 𝑌 = 𝑅𝑜 𝑅𝑖⁄ . As 𝑌 moves from da 
1.10 to 2.00, the ratio 𝜎𝑡,𝑚𝑎𝑥 𝜎𝑡,𝑎𝑣𝑔⁄  moves from 1.05 to 1.67. Other interesting conclusions can be drawn if this 

approach is applied also to the radial stress and the Tresca’s equivalent stress (indicated with 𝜎𝑒𝑞). The following 

table is the obtained: 

𝑿 = 𝒕 𝑹𝒊⁄  0.010 0.020 0.040 0.050 0.060 0.080 0.100 0.200 0.400 0.500 0.600 0.800 1.000 

𝑌 = 𝑅𝑜 𝑅𝑖⁄ = (1 + 𝑋) 1.010 1.020 1.040 1.050 1.060 1.080 1.100 1.200 1.400 1.500 1.600 1.800 2.000 

𝑍 = 1 (𝑌 + 1)⁄  0.498 0.495 0.490 0.488 0.485 0.481 0.476 0.455 0.417 0.400 0.385 0.357 0.333 

𝜎𝑟 / 𝑃 =  − 𝑍 -0.498 -0.495 -0.490 -0.488 -0.485 -0.481 -0.476 -0.455 -0.417 -0.400 -0.385 -0.357 -0.333 

𝜎𝑡 / 𝑃 =  1 / 𝑋 100.000 50.000 25.000 20.000 16.667 12.500 10.000 5.000 2.500 2.000 1.667 1.250 1.000 

𝜎𝑒𝑞  / 𝑃 =  1 / 𝑋 −  𝑍 100.498 50.495 25.490 20.488 17.152 12.981 10.476 5.455 2.917 2.400 2.051 1.607 1.333 

𝜎𝑟,𝑖  / 𝑃 =  (1 −  𝑌²) /(𝑌² −  1) -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 

𝜎𝑡,𝑖  / 𝑃 =  (1 +  𝑌²) /(𝑌² −  1) 100.502 50.505 25.510 20.512 17.181 13.019 10.524 5.545 3.083 2.600 2.282 1.893 1.667 

𝜎𝑒𝑞,𝑖  / 𝑃 = 𝜎𝑡,𝑖  / 𝑃 + 𝜎𝑟,𝑖  / 𝑃   101.502 51.505 26.510 21.512 18.181 14.019 11.524 6.545 4.083 3.600 3.282 2.893 2.667 

𝜎𝑡,1 / 𝜎𝑡 1.005 1.010 1.020 1.026 1.031 1.042 1.052 1.109 1.233 1.300 1.369 1.514 1.667 
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𝑿 = 𝒕 𝑹𝒊⁄  0.010 0.020 0.040 0.050 0.060 0.080 0.100 0.200 0.400 0.500 0.600 0.800 1.000 

𝜎𝑒𝑞,𝑖  / 𝜎𝑒𝑞 1.010 1.020 1.040 1.050 1.060 1.080 1.100 1.200 1.400 1.500 1.600 1.800 2.000 

𝜎𝑟,𝑜 / 𝑃 =  (1 −  1) /(𝑌² −  1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝜎𝑡,𝑜 / 𝑃 =  2 /(𝑌² −  1) 99.502 49.505 24.510 19.512 16.181 12.019 9.524 4.545 2.083 1.600 1.282 0.893 0.667 

𝜎𝑒𝑞,𝑜 / 𝑃 = 𝜎𝑡,𝑜 / 𝑃 + 𝜎𝑟,𝑜 / 𝑃   99.502 49.505 24.510 19.512 16.181 12.019 9.524 4.545 2.083 1.600 1.282 0.893 0.667 

𝜎𝑒𝑞,𝑜 / 𝜎𝑒𝑞 0.990 0.980 0.962 0.952 0.943 0.926 0.909 0.833 0.714 0.667 0.625 0.556 0.500 

Using von Mises’ in lieu of Tresca’s criterion, the equivalent stress becomes: 

𝜎𝑣𝑚 = √𝜎𝑡
2 + 𝜎𝑟

2 − 𝜎𝑡𝜎𝑟 

The previous table is then changed as follows: 

𝑿 = 𝒕 𝑹𝒊⁄  0.010 0.020 0.040 0.050 0.060 0.080 0.100 0.200 0.400 0.500 0.600 0.800 1.000 

𝑌 = 𝑅𝑜 𝑅𝑖⁄ = (1 + 𝑋) 1.010 1.020 1.040 1.050 1.060 1.080 1.100 1.200 1.400 1.500 1.600 1.800 2.000 

𝑍 = 1 (𝑌 + 1)⁄  0.498 0.495 0.490 0.488 0.485 0.481 0.476 0.455 0.417 0.400 0.385 0.357 0.333 

𝜎𝑣𝑚 𝑃⁄  100.250 50.259 25.249 20.248 16.915 12.747 10.246 5.242 2.732 2.227 2.889 1.462 1.202 

𝜎𝑣𝑚,𝑖 𝑃⁄  101.006 50.134 26.024 21.030 17.702 13.547 11.058 6.107 3.686 3.219 2.914 2.545 2.333 

𝜎𝑣𝑚,𝑜 𝑃⁄  99.502 49.505 24.510 19.512 16.181 12.019 9.524 4.545 2.083 1.600 1.282 0.893 0.667 

𝜎𝑣𝑚,𝑖 𝜎𝑣𝑚⁄  1.008 0.998 1.031 1.039 1.047 1.063 1.079 1.165 1.349 1.445 1.543 1.741 1.941 

𝜎𝑣𝑚,𝑜 𝜎𝑣𝑚⁄  0.993 0.985 0.971 0.964 0.957 0.943 0.929 0.867 0.762 0.718 0.679 0.611 0.555 

As expected, the difference between the edges’ equivalent stress and the average equivalent stress is less 
pronounced, than Tresca case. 

Based on what discussed, it is a bit weird the statement in paper ref. [22] that the Barlow’s formula 𝑃 = 2𝑓𝑡 𝐷𝑜⁄  is 
by chance (the authors use the term serendipity) obtained from the von Mises equivalent stress formula for plane 
states in case of thin wall. 

On the contrary, it is, in my opinion, quite obvious that, when considering the membrane stresses, we get the 
Barlow’s formula (as modified by Goodman) that is based on the equilibrium of membrane stresses. Not only this 
occurrence does not appear to be by chance, but it would be weird if not occurring. 

What really surprising is that the original Barlow’s formula (based on incorrect assumptions) has a structure strongly 
similar to that of the current design formulas, which are based on the membranal theory and on the Tresca’s or 
von Mises’ equivalent stress. 

Bursting pressure 

The Barlow’s equation, as per Goodman modification, is largely used to compute the piping bursting or collapse 
pressure, even in presence of alternative equations able to provide more complete and precise solutions.  

A search on the web with key-words “piping burst pressure calculation” gives the outcomes as per the link (>>). 
These links essentially develop the following considerations. 

The equation for the bursting pressure calculation is in general given the following form: 

𝑃𝑏 =
2 ∙ 𝑆 ∙ 𝑡

(𝑆𝐹) ∙ 𝐷𝑜
 

where: 

𝑃𝑏 is the pressure we are looking for, expressed in MPa or other units consistent with the adopted system, 

𝑡 is the piping thickness, in mm or another consistent unit, 

𝐷𝑜 is the piping outside diameter, in mm or another consistent unit, 

𝑆𝐹 is the safety factor, 

𝑆 is the material strength, in MPa or another consistent unit. 

The safety factor values depend upon the target of the calculation. When performing design calculations, 𝑆𝐹 is 
usually set equal to 1.5; when performing limit load calculations, 𝑆𝐹 =  1.0. 

https://www.google.it/search?q=piping+burst+pressure+calculation&sxsrf=ALeKk03oi0ijPgy-y2u-hS1tnBNGQYelnQ:1591873680286&ei=kBDiXvH8EKq91fAP_J65yAo&start=10&sa=N&ved=2ahUKEwjxhPbJz_npAhWqXhUIHXxPDqkQ8tMDegQIDBAz&biw=1316&bih=907
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Even the material strength value depends upon the target of the calculation. When performing design calculations, 
𝑆 is usually equal to the allowable stress specified by the design standard (in this case the safety factor 𝑆𝐹 is still 
embodied in the allowable stress value); when performing limit load calculations, 𝑆 =  𝑆𝑌 (yielding strength) if the 
condition of plasticity onset is searched, or 𝑆 =  𝑆𝑈 (ultimate tensile strength) if the limit condition is the bursting 
collapse. The first case is focused on the service limit state in elastic regime; the second case is focused on the 
collapse limit state. 

The extensive use of the Barlow’s equation to determine the bursting pressure is not, however, accepted by all the 
authors and norms, since, despite the undeniable advantages due to its simplicity, it has no general validity. 

Beyond the search of a formula which is as precise and reliable as possible, under an engineering standpoint the 
following aspects are of great relevance: 

1) the formula shall provide safe results under any service condition; 
2) the formula shall be simple to minimize any possible error; 
3) the results obtained shall be not excessively penalizing, to avoid becoming anti-economics (aspect highly 

sensitive for sectors at high density of capitals as oil and gas). 

It is quite easy to realize that the Barlow’s formula, if used with the yielding strength and the outside diameter, 
returns a collapse pressure value that certainly is a lower limit of those experimentally got (see, on this respect, 
Figure 3 in ref. [22] by A.J. Adams et al.). 

Using this formula with the ultimate tensile strength can lead to an overestimated bursting pressure value. The 
overestimate increases as the material strain hardening exponent 𝑛 increases. i.e. moving from ferritic to austenitic 
stainless steels. 

This conclusion appears to be obvious, since: 

1) The bursting tests looks for the collapse limit load, which is a condition inevitably obtained with a pressure 
value higher than that related to the elastic limit service load governed by the yielding strength. 

2) Beyond yielding, being the behavior no more linear, the use of the ultimate tensile strength looks to be so 
much more inappropriate, how much the tensile curve is stretched and flattened.  This happens for a simple 
physical reason: in materials with high strain hardening exponent the thickness has the tendency to reduce at 
a greater rate as the load increases, the strength capacity consequently reduces quicker and the critical stress 
is reached at pressures lower than those predicted by the Barlow’s formula.  

Therefore, the Barlow’s formula is in general suitable for the calculation of the elastic service limit pressure, 
whereas it shall be used with attention for the calculation of the collapse service limit pressure, I.e. for the bursting 
pressure calculation.  

Codes’ requirements 

The bursting pressure equation provided by the standard API TR 5C3 (ref. [23], [24]) is based on the Barlow’s 
formula, as discussed by Halim et al. in  [25] and Staelens et al. in [26].  For this application, the Barlow’s formula 
makes use of the yielding strength and a safety factor of 0.875 (corresponding to the thickness tolerance of 
commercial piping). The bursting pressure so obtained is the elastic service limit state (plasticity onset condition) 
which represents the critical condition for threaded couplings of the so called OCTG (Oil Country Tubular Goods), 
where the fluid leakage may occur: 

𝑃𝑏 = 0.875
2𝑆𝑌𝑡

𝐷𝑜
 

Paragraph 6.6.2.2 of ISO TR 10400 (ref. [27]) makes use of the same formula from API to determine the elastic 
service limit pressure for thin-walled piping. In paragraph 6.6.4, the Barlow’s formula is replaced by the criterion 
that the von Mises equivalent stress reaches the yielding at the inner edge. 

In Appendix B.3.1 a modified Barlow’s formula is given where use is made of the ultimate tensile strength (ULS) in 
lieu of yielding, with the advice that it applies only end capped piping: 

𝑃𝑏 = 𝑝𝑖𝑅 =
2𝑓𝑢𝑡

𝐷𝑜
 

The equation that is considered to provide the best results is due to the work of Klever e Stewart, reff. [28] and 
[38]. It is based on the last one, with a corrective factor which considers the material strain hardening exponent 𝑛: 
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𝑃𝑏 =
2𝑓𝑢

𝐷𝑜
0.875𝑡

− 1
[(

1

2
)

1+𝑛

+ (
1

√3
)

1+𝑛

] 

Standard DNV-RP-F-101, aimed at assessing if corroded piping is fit for service, presents a formula where, in 
addition to the factor accounting for the flaw geometry 𝑄, there is the following term: 

𝑃𝑏 = 𝑃𝑐𝑎𝑝 = 1.05
2𝑓𝑢𝑡

𝐷𝑜 − 𝑡
∙ 𝐹(𝑄) 

In ref. [39], Zhu and Leis, while reviewing the various methods used to compute the bursting pressure, identify 
some of them, belonging to the so called Tresca family, which are substantially based on the Barlow’s formula even 
though with some modification: 

1. Modification 1 Based on tensile strength and outer diameter 𝑃𝑏 =
2𝜎𝑢𝑡

𝐷𝑜
 

2. Modification 2 Based on tensile strength and internal diameter 𝑃𝑏 =
2𝜎𝑢𝑡

𝐷𝑖
 

3. Modification 3 
Based on flow stress 𝜎𝑓𝑙𝑜𝑤 = 0.5(𝜎𝑦 + 𝜎𝑢) and 

internal diameter 
𝑃𝑏 =

(𝜎𝑦 + 𝜎𝑢)𝑡

𝐷𝑖
 

4. Modification 4 DNV – Based on flow stress and internal diameter 𝑃𝑏 =
2𝜎𝑓𝑙𝑜𝑤𝑡

𝐷𝑚
 

5. Modification 5 
From the authors based on tensile strength and mean 
diameter. 

𝑃𝑏 =
2𝜎𝑢𝑡

𝐷𝑚
 

6. Modification 6 
Fletcher’s equation based on flow stress, internal 
diameter, and the uniform strain at tensile strength  

𝑃𝑏 =
2𝜎𝑓𝑙𝑜𝑤𝑡

𝐷𝑖(1 − 𝜀𝑈𝑇𝑆 2⁄ )
 

It is noted that in addition to the six equations here above, Zhu and Leis list other fifteen equations, among which 
is one proposed by them. According to Zhu-Leis, modifications 1 and 2 provide reasonable enough predictions; 
however, modification 2 tends to overestimate about +2.1% the bursting pressure. Modifications 3 and 4 
underestimate the bursting pressure in the range −6.8% and −9.2%. The industry usually makes use of the 
modification 1 since it provides conservative values for the bursting pressure, with an underestimation of about 
−3%. Modification 5 gives underestimates about −0.6%. This last result is however valid only nfor materials having 
ratio 𝑌 𝑇 = 0.7 ÷ 0.9⁄ , where: 

𝑌

𝑇
= (

𝜀𝑦𝑠𝑒

𝑛
)

𝑛

 

The values 𝑌 𝑇 = 0.7 ÷ 0.9⁄  represent carbon steels.  

According to A. J. Adams et al. [22], this use of the Barlow’s formula is not correct, since:  

1) the formula was originally (1836) obtained for thick-walled piping using incorrect hypotheses (equilibrium 
violation);  

2) it cannot be properly used for thin-walled piping for which unconservative results may be obtained. To 
overcome these issues, the ISO TC67 SC5 workgroup 2  has carried out the 2018 revision of the standard ISO TR 
10400 where the Klever-Stewart’s formula is used (ref. [28], [29]) since acknowledged to be the most accurate, 
as discussed by A. J. Adams et al. in [22]. 

Conclusions 

The formula that Barlow originally (1836) obtained has a structure very similar to that used by the modern design 
codes that is based om Boardman’s formula (ref. [8]). 

The formula recalled as Barlow’s formula was obtained by Goodman who applied the Barlow’s theory to thick-
walled cylinders and established that they are equivalent to thin-walled cylinders when the hoop stress values on 
the inner edge are equal. This equivalence criterion is the origin of the presence of the outside diameter in the 
formula commonly used. 
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In technical literature, there is no mention of a Mariotte’s formula for the calculation of the wall thickness of piping 
subjected to pressure. 

The structure of the design formulas used by the pressure vessel and piping codes is derived by the membranal 
theory applied to thin-walled shells which makes use of the mean diameter. However, the same formula may be 
derived for thick-walled piping if the membrane components of hoop and radial stresses are considered and the 
membrane Tresca equivalent stress is then obtained. 

The Barlow’s equation with the inside diameter is correct also for thick-walled piping if it is intended to represent 
the hoop stress averaged through the thickness (membrane stress), which is the stress that the design codes require 
to be controlled and limited  to avoid the plastic collapse. It follows that no error is committed in using in this way 
the formula. 

Depending on the diameter used, there are three different versions of the Barlow’s formula: 

1) With the internal diameter, the formula gives the primary membrane hoop stress; this formula applies to thin 
walled as well as to thick-walled cylinders. 

2) With the outside diameter, the Barlow’s formula gives the maximum hoop stress on the inner edge; this 
formula correctly applies only to thin walled cylinders since its precision decrease as the thickness increases. 

3) With the mean diameter, the Barlow’s formula assumes a structure very similar to that adopted by the modern 
design codes and is surprisingly like the original (1836) Barlow’s formula, too. 

The Barlow’s formula, if used with the ultimate tensile strength and the mean diameter, is fit to determine the 
bursting pressure of piping made in ferritic steel, case for which it provides slightly underestimated values (−0.6%) 
what is safe. In case of steels with high values of the strain hardening exponent, 𝑛,  as austenitic stainless steels 
are, it is necessary to use other more appropriate equations that consider this parameter (Zhu-Leis, Klever, Faupel, 
etc.). 
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